If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+10x=120
We move all terms to the left:
100x^2+10x-(120)=0
a = 100; b = 10; c = -120;
Δ = b2-4ac
Δ = 102-4·100·(-120)
Δ = 48100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48100}=\sqrt{100*481}=\sqrt{100}*\sqrt{481}=10\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{481}}{2*100}=\frac{-10-10\sqrt{481}}{200} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{481}}{2*100}=\frac{-10+10\sqrt{481}}{200} $
| -4c+40=12 | | x+25+2x-4=117 | | 5t²=1.5t | | x+25=2x-4 | | 2x+5=x+x+7 | | 5(x-11)=x-43 | | 2x-10=-4x+14 | | 8(x-7)-7(-6+2x)=16 | | 6+1c=5 | | 7^3x-2=5 | | 2^(x-3)*5^(x+1)=62.5 | | 9x-2=6x-3 | | 2x+3x=38 | | 8(x+5)+3=-5(x-1)-4 | | -12+-6z=6 | | 11^2-x=0 | | -10n+2n-16n+19n+-11n=-16 | | 8f-24=-8 | | -20+10x=5(-2x-4) | | 9q-5q+q+4q-8q=16 | | 1.2x+7=21 | | 13^(x+3)+4=81 | | (4x-6)(9x+7)=0 | | 2=1.5^x | | 5n-4n+4n-5n+n=13 | | -10s+-20=-10 | | 18w-6w-6w=12 | | 4.5d+6-8d=29.5 | | -7d-28=7 | | f2-11f+24=0 | | 10,6x+45.000=16,3x | | 5a+19=3a+7 |